DC?: Dual-Camera Defocus Control by Learning to Refocus
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Figure 1. Post-capture depth-of-field (DoF) control from dual camera. (Left) Using photos captured from dual cameras with a wide
field of view (FoV) and ultra-wide FoV, our method enables various DoF manipulations. (Right) We showcase our results of refocusing
(changing the focal plane), deblurring (creating all-in-focus imagery), and synthesizing a shallower DoF (producing bokeh effects).

Abstract

Smartphone cameras today are increasingly approach-
ing the versatility and quality of professional cameras
through a combination of hardware and software advance-
ments. However, fixed aperture remains a key limitation,
preventing users from controlling the depth of field (DoF)
of captured images. At the same time, many smartphones
now have multiple cameras with different fixed apertures -
specifically, an ultra-wide camera with wider field of view
and deeper DoF and a higher resolution primary camera
with shallower DoF. In this work, we propose DC?, a system
for defocus control for synthetically varying camera aper-
ture, focus distance and arbitrary defocus effects by fusing
information from such a dual-camera system. Our key in-
sight is to leverage real-world smartphone camera dataset
by using image refocus as a proxy task for learning to con-
trol defocus. Quantitative and qualitative evaluations on
real-world data demonstrate our system’s efficacy where we
outperform state-of-the-art on defocus deblurring, bokeh
rendering, and image refocus. Finally, we demonstrate cre-
ative post-capture defocus control enabled by our method,
including tilt-shift and content-based defocus effects.

1. Introduction

Smartphone cameras are the most common modality
for capturing photographs today [13]. Recent advance-
ments in computational photography such as burst photog-
raphy [18], synthetic bokeh via portrait mode [48], super-
resolution [55], and more have been highly effective at clos-
ing the gap between professional DSLR and smartphone
photography. However, a key limitation for smartphone
cameras today is depth-of-field (DoF) control, i.e., control-
ling parts of the scene that appear in (and out of) focus. This
is primarily an artifact of their relatively simple optics and
imaging systems (e.g., fixed aperture, smaller imaging sen-
sors, etc.). To bridge the gap, modern smartphones tend to
computationally process the images for further post-capture
enhancements such as synthesizing shallow DoF (e.g., por-
trait mode [37,48]). However, this strategy alone does not
allow for DoF extension or post-capture refocus. In this
work, we propose Dual-Camera Defocus Control (DC?), a
framework that can provide post-capture defocus control
leveraging multi-camera systems prevalent in smartphones
today. Figure 1 shows example outputs from our frame-
work for various post-capture DoF variations. In particular,



our method is controllable and enables image refocus, DoF
extension, and reduction.

Post-capture defocus control is a compound process that
involves removing defocus blur (i.e., defocus deblurring)
and then adding defocus blur selectively based on the scene
depth. Defocus deblurring [2,4,5,23,27,31,35,39,40,42,
43,59, 60], itself, is challenging due to the nature of the
defocus point spread function (PSF) formation which can
be spatially varying in size and shape [28,46]. The PSF’s
shape and size are not only depth dependent, but also vary
based on aperture size, focal length, focus distance, optical
aberration, and radial distortion. Synthesizing and adding
defocus blur [9, 17, 21, 33, 37, 38, 48, 57, 58] is also diffi-
cult and requires an accurate depth map along with an all-
in-focus image. Additionally, it requires realistic blur for-
mation and blending around the object’s boundaries. Most
prior work has addressed defocus deblurring and synthesiz-
ing defocus blur as two isolated tasks. There has been less
work on post-capture defocus control (e.g., image refocus-
ing [22,34,41]). The image refocusing literature [22, 34]
has focused on light-field data captured with specialized
hardware. While the results in [51,52] are the state-of-the-
art, light-field data is not representative of smartphone and
DSLR cameras by lacking realistic defocus blur and spatial
resolution [12].

Most modern smartphones are now equipped with two
or more rear cameras to assist with computational imaging.
The primary camera — often referred to as the wide camera
or W — has a higher resolution sensor, a higher focal length
lens but a relatively shallower DoF. Alongside W is the
ultra-wide (UW) camera, often with a lower resolution sen-
sor, lower focal length (wider field of view) and wider DoF.
Our critical insight is to leverage this unique camera setup
and cross-camera DoF variations to design a system for re-
alistic post-capture defocus control. Differently from prior
work, we tackle the problem of defocus control (deblurring
and adding blur) and propose using real-world data easily
captured using a smartphone device to train our learning-
based system. Our primary contributions in this work are as
follows:

* We propose a learning-based system for defocus con-
trol on dual-camera smartphones. This subsumes
the tasks of defocus deblurring, depth-based blur ren-
dering, image refocusing and enables arbitrary post-
capture defocus control.

* In the absence of defocus control ground-truth, we en-
able training our system on real-world data captured
from a smartphone device. To achieve that, we re-
formulate the problem of defocus control as learning
to refocus and define a novel training strategy to serve
the purpose.

¢ We collect a dataset of diverse scenes with focus stack

data at controlled lens positions the W camera and ac-
companying UW camera images for training our sys-
tem. Additionally, we compute all-in-focus images
using the focus stacks to quantitatively evaluate im-
age refocus, defocus deblurring and depth-based blur-
ring tasks and demonstrate superior performance com-
pared to state-of-the-art (SoTA) methods across all
three tasks.

* Finally, we demonstrate creative defocus control ef-
fects enabled by our system, including tilt-shift and
content-based defocus.

2. Related Work

Defocus Deblurring Defocus blur leads to a loss of detail
in the captured image. To recover lost details, a line of work
follows a two-stage approach: (1) estimate an explicit de-
focus map, (2) use a non-blind deconvolution guided by the
defocus map [23,42]. With the current advances in learning-
based techniques, recent work perform single image deblur-
ring directly by training a neural network end-to-end to re-
store the deblurred image [2,27,31,39,40,43]. Due to the
difficulty of the defocus deblurring task, other works try to
utilize additional signals, such as the dual pixel (DP) data to
improve deblurring performance [4,5,35,59,60]. DP data is
useful for deblurring as it provides the model with defocus
disparity that can be used to inform deblurring. While the
DP data provides valuable cues for the amount of defocus
blur at each pixel, the DP views are extracted from a single
camera. Therefore, the performance of the DP deblurring
methods drops noticeably and suffer from unappealing vi-
sual artifacts for severely blurred regions.

In the same vein, we aim to exploit the UW image as a com-
plementary signal already available in modern smartphones
yet ignored for DoF control. By using the UW image with
different DoF arrangements, we can deblur regions with se-
vere defocus blur that existing methods cannot handle be-
cause of the fundamental information loss. Nevertheless,
we are aware that using another camera adds other chal-
lenges like image misalignment, occlusion, and color mis-
matches which we address in Section 4.3.

Bokeh Rendering Photographers can rely on shallow DoF
to highlight an object of interest and add an artistic effect to
the photo. The blur kernel is spatially variant based on depth
as well as the camera and optics. To avoid the need of es-
timating depth, one work magnifies the existing defocus in
the image to make the blur more apparent without explicit
depth estimate [7]. Since recent work in depth estimation
improved significantly [30,44], many shallow DoF render-
ing methods assume having depth [37] or estimate depth in
the process [48,57]. Using an input or estimated depth map,
a shallow DoF can be synthesized using classical rendering
methods [9, 17, 38, 48], using a neural network to add the



Ref. UW

Output

Ref. Wide
Target Wide

Ref. Defocus
Target Defocus

(a) Dual camera image refocus dataset.

(b) Proxy task: Learn to refocus.

Target Defocus

Refocused Deblurred

(c) Evaluate on arbitrary defocus maps.

Shallow DoF

Figure 2. Image refocus as a proxy task. Since we cannot gather a real dataset for arbitrary focus manipulation, our idea is to train a
model to perform image refocus using a target defocus map as an input. At the test time, our trained model can perform arbitrary focus

manipulation by feeding it an arbitrary target defocus map.

synthetic blur [21,33,50] or a combination of classical and
neural rendering [37]. With that said, shallow DoF synthe-
sis methods typically assume an all-in-focus image or an
input with a deep DoF.

Our proposed framework learns to blur as a byproduct of
learning to refocus with the insight that the refocus task
involves both deblurring and selective blurring. Unlike
prior work that addressed either defocus deblurring or im-
age bokeh rendering, we introduce a generic framework that
facilitates post-capture full defocus control (e.g., image re-
focusing).

Image Refocus and DoF Control At capture time, the
camera focus can be adjusted automatically (i.e., autofo-
cus [3, 6, 19]) or manually by moving the lens or adjust-
ing the aperture. When the image is captured, it can still
be post-processed to manipulate the focus. Nevertheless,
post-capture image refocus is challenging as it requires both
deblurring and blurring. Prior work uses specialized hard-
ware to record a light field which allows post-capture fo-
cus control [34,53]. However, light field cameras have low
spatial resolution and are not representative of smartphone
cameras. An alternative to requiring custom hardware is to
capture a focus stack, and then merge the frames required to
simulate the desired focus distance and DoF [10,22,29,36],
but the long capture time restricts using focus stacks to static
scenes. Research on single-image refocus is limited due to
its difficulty, but the typical approach is to deblur to obtain
an all-in-focus image followed by blurring. Previous work
used classical deblurring and blurring [8] to obtain single
image refocus, and the most notable recent single-image-
based image refocus is RefocusGAN [41], which trains a
two-stages GAN to perform refocusing. The limited re-
search on software-based image refocus is likely due to the
challenging task that involves both defocus deblurring and
selective blurring. In our work, we provide a practical setup
for post-capture image refocus without the restrictions of

inaccessible hardware or the constraint of capturing a fo-
cus stack. We do so by leveraging the dual camera that is
available in modern smartphones.

Image Fusion. Combining information from images with
complementary information captured using different cam-
eras [36,47] or the same camera with different capture set-
tings [15, 18] can enhance images in terms of sharpness [22,
36,47], illuminant estimation [1], exposure [11, 15, 18,36],
or other aspects [16, 32,47,49]. With the recent preva-
lence of dual-camera smartphones today, researchers have
pursued works that target this setup. One line of work
has used dual-camera for super-resolution to take advan-
tage of the different resolutions the cameras have in still
photos [51, 56, 64] as well as in videos [26]. The dual-
camera setup has also been used in multiple commercial
smartphones, e.g., Google Pixel devices to deblur faces by
capturing an ultra-wide image with faster shutter time and
fusing with the wide photo [25]. To our knowledge, we are
the first to investigate using the dual-camera setup for defo-
cus control.

3. Learning to Refocus as a Proxy Task

As mentioned, smartphone cameras tend to have fixed
apertures limiting DoF control at capture time. In our work,
we aim to unlock the ability to synthetically control the
aperture - by transferring sharper details where present and
synthesizing realistic blur. However, to train such a model,
we run into a chicken and egg problem: we require a dataset
of images captured with different apertures, which isn’t pos-
sible with smartphones. An alternative solution could be to
generate such a dataset synthetically, but modeling a real-
istic point spread function (PSF) for the blur kernel is non-
trivial [5]. Professional DSLRs provide yet another alter-
native [20] but often require paired captures smartphone /
DLSR captures to reduce the domain gap. Ideally, we would
like to use the same camera system for both training and
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Figure 3. Data processing and high-level architecture. (Leff) To be able to use the reference inputs for our Detail Fusion Network, we
need to align the inputs and a depth estimate to approximate the defocus map of the reference W and the target defocus map we would
like to synthesize. We use flow-based alignment with PWCNet [45] and use the stereo depth estimated using portrait mode [48]. (Right)
Our Detail Fusion Network (DFNet) consists of refinement modules to refine the reference inputs combined with a fusion module that

predicts blending masks to combine the two refined inputs.

evaluation. To resolve this, we observe that a somewhat par-
allel task is image refocus. When we change the focus dis-
tance, the defocus radius is adjusted in different parts of the
image, involving a combination of pixels getting deblurred
and blurred. This suggests that image refocus is at least as
hard as scaling the DoF. Motivated by this observation, we
make the hypothesis that by training a model on image re-
focus as a proxy task, we can use the same model to control
the DoF at test time as we show in Figure 2. The key idea
is to provide the model with reference and target defocus
maps ( Section 4.1) as input, and at test time control the
model behavior by manipulating this target defocus map.

4. Method

To train a model on our proxy task, we need to collect
a dataset of focus stacks for the wide camera and a paired
ultra-wide frame which can be used as a guide due to its
deeper DoF. In Figure 3 we show the high-level structure of
our method dubbed DC?. The primary module that we train
is the Detail Fusion Network (DFNet), which requires a ref-
erence wide frame, (aligned) reference ultra-wide frame,
and estimated defocus maps. In Section 4.1, we describe
how we collect the focus stack data and process it to obtain
the inputs needed for DFNet. We then describe the archi-
tecture details of DFNet in Section 4.2, which is motivated
by the dual-camera input setup.

4.1. Data Processing

Using the Google Pixel 6 Pro as our camera platform,
we captured a dataset of 100 focus stacks of diverse scenes,
including indoor and outdoor scenarios. For each scene,
we sweep the focus plane for the wide camera and cap-

ture a complete focus stack. We simultaneously capture a
frame from the ultra-wide camera, which has a smaller aper-
ture, deeper DoF, and fixed focus. For each frame, we use
optical-flow-based warping using PWCNet [45] and follow-
ing prior work [25] to align the ultra-wide frame with the
wide frame. Since the alignment is imperfect (e.g., in tex-
tureless regions and occluded boundaries), we estimate an
occlusion mask that can be used to express potentially mis-
aligned regions for the model. To estimate defocus maps,
we require the metric depth. We use the depth map em-
bedded in the Pixel camera’s portrait mode output which
can estimate metric depth using dual camera stereo algo-
rithms [63] with a known camera baseline. To compute the
defocus map associated with each frame, we use the follow-
ing formula for the radius of the circle of confusion ¢

c—alB2SIl 1 (1)
S Si—f
where A is the camera aperture, S is the focus distance, S
is the pixel depth, and f is the focal length. In Figure 2a,
we show a visualization of a focus stack, associated UW,
stereo depth, and a collection of sample scenes.

4.2. Model Architecture

Our method performs detail fusion on two primary in-
puts: the reference wide (W) and ultra-wide (UW) images.
Since we train the model to refocus, W is expected to be
treated as a base image, while UW is a guide for missing
high-frequency details.

Based on this intuition, we propose Detail Fusion Net-
work (DFNet) that has two refinement paths: W refine-
ment path (@Zf), UW refinement path (q)%‘}/), and a fusion



module (P yy0,) that predicts blending masks for the re-
fined W and refined UW. Note that the W refinement path
never gets to see the UW frame and vice versa. We use
a network architecture based on Dynamic Residual Blocks
Network (DRBNet) [39] for our refinement modules with
multi-scale refinements. For the fusion module, we use a
sequence of atrous convolutions [14] for an increased re-
ceptive field and predict a blending mask for each scale. To
preserve high-frequency details in the blending mask, we
add upsampling layer and residual connections when pre-
dicting the blending mask of the larger scale. During train-
ing, we blend the outputs of ®}, - and L% and compute the
loss for all scales for improved performance. In Figure 3 we
show a high-level diagram of our architecture and how each
component interacts with the others. By visualizing the in-
termediate outputs between our different modules, we ob-
serve that the network indeed attempts to maintain the low-
frequency signal fromW while utilizing high-frequency sig-
nals from UW. Please refer to the supplementary material
for a detailed model architecture and a deeper analysis of
model behavior and visualizations.

4.3. Training Details

We train our model by randomly sampling slices from
the focus stack in our training scenes. For each element in
the batch, we randomly sample a training scene, and sam-
ple two frames to use as reference and target images, re-
spectively. While we can approximate depth from all pairs,
severely blurry frames can have unreliable depth. To ad-
dress that, we use the stereo pair with the greatest number
of matched features to use for the scene depth to compute
the defocus maps. We train on randomly cropped 256x256
patches, using a batch size of 8, and a learning rate of 10~4
for 200k iterations, and then reduce the learning rate to 107>
for another 200k iterations using Adam [24]. Our recon-
struction loss is a combination of L; loss on pixels and gra-
dient magnitudes, SSIM loss [54], and perceptual loss [61].
For a target wide frame W,,, and a model output y, the loss
is

Liorar = Ly (thlay) +1 (legta Vy)

()
Lssint(Wigr,¥)) +Lvoe(Wigr,y)

5. Experimental Results

We train our method to perform defocus control through
training on the proxy task of image refocus. As a result,
our model can perform a variety of related defocus control
tasks. Specifically, we evaluate our method on defocus de-
blurring, synthesizing shallow DoF, and image refocus.
Evaluation metrics. We use the standard signal processing
metrics, i.e., the peak signal-to-noise ratio (PSNR) and the
structural similarity index measure (SSIM). We also report

Table 1. Defocus deblurring evaluation. Performance on
generating all-in-focus images from a single slice in the focus
stack. The best results are in bold numbers.

Method PSNR1 SSIM{ LPIPS |
MDP [2] 2350 0674 0394
IFAN [27] 2348 0679 0371
DRBNet [39] 2427  0.681 0377
Ours 2479 0704  0.351

the learned perceptual image patch similarity (LPIPS) [62].
5.1. Defocus Deblurring

Task. The goal of defocus deblurring is to remove the de-
focus blur in the image. For our method to perform defo-
cus deblurring, we simply set the target defocus map to all
zeros. To obtain an all-in-focus image as a ground truth,
we perform focus stacking using our focus stacks through
commercial software provided by HeliconFocus. Then the
evaluation task is deblurring individual slices from the fo-
cus stack to generate an all-in-focus image. Due to the fo-
cus magnification between the focus stack slices, we align
the field-of-view (FoV) with the all-in-focus image through
a combination of FoV matching and brute-force search for
the best scaling and translation parameters that minimize
the error. We use the same alignment method when evalu-
ating all the methods to ensure fairness.

Methods. We compare our method with the following
single-image defocus deblurring methods: Dynamic Resid-
ual Blocks Network (DRBNet) [39], Multi-task DP (MDP)
network [2], and Iterative Filter Adaptive Network (IFAN)
[27]. Note that these methods do not take the ultra-wide
image as input, and the main purpose of the comparison
is to highlight the value of leveraging an available dual-
camera setup. Our dataset does not contain DP data and
thus we are not able to benchmark the DP defocus deblur-
ring methods [4,5,35,59,60]. As for the evaluation on other
defocus deblurring datasets (e.g., [4]), our method requires
dual-camera input not available in current datasets.
Evaluation. In Table 1, we compare the performance of
our method against other defocus deblurring methods. Our
method achieves the best results on all metrics with dual
camera inputs. Note that our method has never seen all-
in-focus outputs / zero target defocus maps during training
and learns to deblur via the proxy task. Figure 4 shows
two deblurring results of our method against DRBNet [39].
As shown in the zoomed-in insets, our method is able to
restore severely blurred regions better compared to DRB-
Net. In general, single-image defocus deblurring methods
suffer from artifacts and tend to hallucinate when restoring
severely blurred regions. Therefore, an additional signal
such as the UW is very useful when the details are com-
pletely lost in the input image. While the main task of our
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Figure 4. Defocus deblurring. We showcase the results of our method against SoTA single image defcous deblurring DRBNet [39]. Note
that our method restores severely blurred regions in the background that single-image based methods often struggle with.

Table 2. Bokeh blurring evaluation. performance on simulating
different slices of the focus stack from the all-in-focus image.

Method PSNR1 SSIM{ LPIPS |

BokehMe [37] 26.65 0.870 0.241
Neural Rend. [37] 27.87 0.874 0.246
Classic Rend. [37] 26.66 0.870 0.241
Ours 29.78 0.898 0.172

proposed method is not only defocus deblurring, it achieves
the SoTA deblurring results quantitatively and qualitatively.
These results also demonstrate how generic and flexible our
proposed defocus control framework is.

5.2. Shallow DoF Rendering

Task. We also evaluate our method on rendering shallow
DoF images. The input to the method is an all-in-focus im-
age, an approximate target defocus map, and the desired
output is the image with a synthetic shallow DoF guided by
the defocus map. We use the all-in-focus image generated
from the focus stack as input and try to reconstruct the vari-
ous slices in the focus stack using each slice’s defocus map
as a target.

Methods. We compare against BokehMe [37], a re-
cent state-of-the-art in shallow DoF synthesis that relies
on blending the outputs of classic blur synthesis with
neural rendering methods. We also evaluate the classi-
cal scattering-based blur and the neural renderer within
BokehMe in isolation.

Evaluation. In Table 2, we show that our method is com-
petitive with SoTA shallow DoF rendering methods. Note
that for DoF reduction, UW does not provide a useful sig-
nal since the task primarily involves signal removal from
W, but the model learns to perform this task as a byproduct
of training on image refocus. In Figure 5 we show visual

Table 3. Image refocus evaluation. Performance on
re-synthesizing focus planes given an input with different focus
plane from the same scene.

Method PSNR1 SSIM{ LPIPS |
UW + Blur [37] 21.89 0803  0.364
Deblur [39]+Reblur [37] 2640  0.833 0312
Ours 2858  0.860  0.217

results where our model synthesizes realistic blur.

5.3. Image Refocus

Task. Image refocus involves shifting the focus plane and
as a result, the near and far focus depths. To evaluate on im-
age refocus, we randomly sample two frames from a focus
stack, a reference frame, and a target frame, and evaluate
the model performance in reproducing the target frame.
Methods. There is limited work on single-image refocus,
the most notable work being RefocusGAN [41]. The idea
behind RefocusGAN is to use generative models to deblur
the image followed by blurring it. This approach is likely
because of the difficulty of realistically switching between
different defocus amounts directly [7]. However, we are not
able to compare with RefocusGAN as the code and trained
models are not available. As an alternative for comparison,
we adopt SoTA in defocus deblurring (DRBNet [39]) and
SoTA in blurring (BokehMe [37]) for image refocus. We
also compare against blurring the aligned UW directly since
it could approximate an all-in-focus image.

Evaluation. In Table 3 we show that our method outper-
forms the baseline in image refocus. Note that since we
train our method to switch between the reference defocus to
the target defocus, the model can implicitly learn to switch
between different PSF scales from the data. We show visual
results in Figure 6. Note that when the target image contains
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Figure 5. Blurring results. Our method can synthesize shallow DoF from an all-in-focus image with a performance competitive with

SoTA in bokeh rendering [37].
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Figure 6. Refocus results. We shift the focus plane and demonstrate that we can match the desired refocused image and the target blur
without completely deblurring the input. Our method outperforms the baseline that refocuses by deblurring and reblurring the image.

Table 4. Ablations on Image Input. Comparison on different
input types. Although performance increases by removing the
occlusion mask, qualitative performance drops (see Figure 7).

Method PSNR*T SSIM1{ LPIPS|
W only 28.44 0.855 0.260
UW only 22.66 0.822 0.307
No occlusion 28.81 0.864 0.219
Full input 28.58 0.860 0.217

blurry regions like shown on the wall, our method deblurs
the input just enough to match the target defocus.

5.4. Ablation Study

The key idea of our work is using the ultra-wide cam-
era as a guide to performing DoF control. To evaluate the
effects of using UW, we train a model using only W (only
keeping the Wide refinement module) and similarly train-

ing a UW only model. We compare their performance on
image refocus in Table 4. Note that while the wide input is
sufficient when the target involves only blurring or minimal
deblurring, it is an ill-posed setup when it requires consid-
erable deblurring. On the other hand, the warped UW lower
quality severely limits the performance when relying on it
completely. We visualize an example in In Figure 7. Note
that when using W only, deblurring performance is limited.
Also we note that when removing the occlusion mask, while
signal-processing metrics could see slight improvements,
qualitative performance drops as we can observe ghosting
artifacts around occluded boundaries.

Applications. Our method allows for arbitrary target defo-
cus maps as an input. In Figure 8 we demonstrate a tilt-shift
effect, where a large scene appears smaller because of the
blur, as well as using a segmentation mask to deblur objects
of interest (the person) while blurring the remaining objects.



Wide only UW only

Figure 7. Ablation. Using the occlusion mask helps the model
avoid transferring warping artifacts to the final image, while using
W only hinders deblurring performance, and UW only suffers
from warping artifacts and lower resolution.

Figure 8. Creative applications. (Top) we apply tilt shift effect
that makes large objects appear as miniatures. (Botfom) we use
segmentation mask to deblur objects of interest and blur the
background.

eviid
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Figure 9. Failure cases. (Top) In regions where UW is out of
focus, as in the table shown above, our method would not be able
to restore the sharp texture shown in the W image when focused
on that object. (Bottom) Aligning the UW using optical flow
based alignment could suffer when W is severly blurred like
shown on the warping artifacts on the window.

6. Limitations and Conclusion

We present DC2, a novel framework for defocus con-
trol with dual-camera consumer smartphones. We bypass
the need for synthetic data and domain gap issues by train-
ing with real data captured with a smartphone device. We
do so by re-framing the defocus control problem as refo-
cus and designing a learning-based solution for the same.
The key idea behind our method is to use UW input as an
additional signal to control defocus of W. Naturally, a limi-
tation then is the DoF of UW itself; as objects outside of its
DoF might not be sharper than in W. In general, our method
benefits from asymmetry in the W and UW camera config-
urations and likely won’t perform as well in systems with
identical cameras. Another limitation is our dependence on
pre-existing optical flow and stereo depth algorithms which
can suffer from severe artifacts with defocus blur (Figure
9). A promising avenues for future work includes utilizing
additional cameras to jointly model both scene depth and
defocus control.
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A. Video Visualization

One major advantage of our method is the fine-grained
control we can have on the defocus control. As a result,
we can directly simulate changing the focus distance and
aperture smoothly just like if we had a DSLR camera with
variable focal length and aperture. Please refer to the video
provided in the supplementary materials.

B. Detailed Architecture

The model architecture consists of three primary mod-

ules: dDZ‘e’f to refine W, CIDZ‘}V to refine UW, and a fusion
model ®y,,, to predict a blending mask to blend the re-
fined outputs. Both dD‘er and dDrUe;V use DRBNet archi-
tecture [39] that utilize kernels prediction to refine the in-
put. Each refinement module predicts intermediate outputs
in a multi-scale setup that can be used to speed up train-
ing. Specifically, the model generates refined outputs at
the following scales: 8x downsampled, 4x downsampled,
2x downsampled, and the original resolution. To be able
to fuse all the multi-scale outputs, @ f,0, consists of sev-
eral Atrous Spatial Pyramid Pooling (ASPP) convolutions
blocks [14] to predict blending mask for each scale. The
ASPP blocks for each scale take the refined W and UW
of the associated scale, as well as an upsampled blending
mask from the previous ASPP block with a residual con-
nection of the upsampled mask (except for the first ASPP
block since it has no preceding blending mask). There are
two hyperparameters associated with the blending block for
each scale: (1) atrous rates for the atrous convolutions, and
(2) the number of channels each intermediate step of atrous
convolutions outputs. In table 5, we include a list of the hy-
perparameters for the blending block associated with each
scale.
One issue with training the model in using cropped patches
is that the blur kernel is spatially varying depending on the
crop position. To resolve the ambiguity, we follow the so-
lution proposed by Abuolaim et al. [S] and concatenate a
radial mask to the inputs of all modules where the pixel val-
ues of the mask are the distance from the original image
center, normalized.

Table 5. Fusion model (P ,;,,) hyperparameters. The
hyeraprameters for the ASPP convolution blocks are the atrous
rates for the atrous convolutions, and the channels each layer
outputs. The number of atrous convolution layers is the size of
the channel list. Note that the final output consists of two
channels which correspond to the W and UW blending masks.

Blending Block atrous rates channels
1/8x scale 1,3,5 16, 32,2
1/4x scale 1,3,6,12 16, 32,2
1/2x scale 1,3,6,12, 15 16, 32,2
1x scale 1,3,6,12, 15,18 16,32,32,2
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Figure 10. Disparity from iPhone. Using portrait mode, we
obtained Dual-camera disparity using an iPhone 14 Pro.

C. Model Analysis

The primary motivation behind our architecture design
is, depending on the target defocus map, the network can
choose to deblur/blur parts of W and transfer sharper de-
tails from UW if necessary. Due to our model design, we
can directly visualize the intermediate outputs to understand
the model behavior. Specifically, we can visualize the re-
fined W and UW which are the outputs of CI>‘r)‘e/f and CD%V,
as well as the blending masks predicted by the fusion net-
work ® 40, We visualize the intermediate outputs of our
method on the task of all-in-focus deblurring in Figures 11
and 12. Note that in both examples, the mask associated
with UW has large values around edges and regions with
high frequencies, while the mask for W has higher values
inlow frequency regions. This supports our hypothesis of
having UW serve for high frequency details that could be
blurry in W, while the W should be used as a reference to
preserve the desired colors even in blurry regions. This be-
havior makes our method robust to color differences in W
and UW just like we show in Figure 11 where UW has in-
correct white balance, and in Figure 12 we show how the
model avoids relying on UW in occluded regions where ar-
tifacts may show up in the optical flow alignment.

D. Generalizing to Different Phone Setup

Our method requires only two cameras with different
DoFs. This is widely available in modern smartphones
since ultra-wide cameras tend to have a deeper DoF due
to the small focal length compared to the wide and Tele-
photo cameras. Our approach that utilizes the defocus map
is not specific to a particular device, but rather it can pro-
duce fairly good results for any smartphone with a simi-
lar UW+W dual-camera setup. To use data captured using
an iPhone 14 Pro, we used the iPhone’s portrait mode to
obtain a disparity map (shown in Fig. 10), and warped the
UW using an opitcal-flow based alignment. In Fig. 13, we
show results of our model on data captured by iPhone 14
Pro without any finetuning.
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Figure 11. Intermediate results visualization. Note that the whitebalance is off in UW, but the refinement module does not get affected
by that since it primarily preserves the high frequencies in refined UW. In the refinement of W, we notice that the model deblurs the edges
and preserves the low-frequency signals that can be blended with the details from UW
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Figure 12. Intermediate results visualization. Note that while
the aligned UW suffers from an alignment artifcat around the
bottle, the predicted masks take that into account by setting a low
blending value for the occluded region in the UW mask and a
higher value in the W mask.

Deeper DoF Reduced DoF

Figure 13. Results on iPhone 14 Pro. We ran our model on
images from an iPhone 14 Pro, and show that it generalizes with
blurring and deblurring despite not finetuning the model on any
iPhone data.
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